Ciencia Tecnología y Naturaleza
Genética Mendeliana
Mendel publicó sus experimentos con guisantes en 1865 y 1866. A continuación se describen las principales ventajas de la elección de Pisum sativumcomo organismo modelo: su bajo coste, tiempo de generación corto, elevado índice de descendencia, diversas variedades dentro de la misma especie (color, forma, tamaño, entre otros.). Además, reúne características típicas de las plantas experimentales, como poseer caracteres diferenciales constantes.
Pisum sativum es una planta autógama, es decir, se autofecunda. Mendel lo evitó emasculándola (eliminando las anteras). Así pudo cruzar exclusivamente las variedades deseadas. También embolsó las flores para proteger a los híbridos de polen no controlado durante la floración. Llevó a cabo un experimento control realizando cruzamientos durante dos generaciones sucesivas mediante autofecundación para obtener líneas puras para cada carácter.
Mendel llevó a cabo la misma serie de cruzamientos en todos sus experimentos. Cruzó dos variedades o líneas puras diferentes respecto de uno o más caracteres. Como resultado obtenía la primera generación filial (F1), en la cuál observó la uniformidad fenotípica de los híbridos. Posteriormente, la autofecundación de los híbridos de F1 dio lugar a la segunda generación filial (F2), y así sucesivamente. También realizó cruzamientos recíprocos, es decir, alternaba los fenotipos de las plantas parentales:
♀P1 x ♂P2
♀P2 x ♂P1
(siendo P la generación parental y los subíndices 1 y 2 los diferentes fenotipos de esta).
Además, llevó a cabo retrocruzamientos, que consisten en el cruzamiento de los híbridos de la primera generación filial (F1) por los dos parentales utilizados, en las dos direcciones posibles:
♀F1 x ♂P2 y ♀P2 x ♂F1 (cruzamientos recíprocos)
♀F1 x ♂P1 y ♀P1 x ♂F1 (cruzamientos recíprocos)
Los experimentos demostraron que:
-
La herencia se transmite por elementos particulados (refutando, por tanto, la herencia de las mezclas).
-
Siguen normas estadísticas sencillas, resumidas en sus dos principios.
Las leyes de Mendel[editar]
Las tres leyes de Mendel explican y predicen cómo van a ser los caracteres físicos (fenotipo) de un nuevo individuo. Frecuentemente se han descrito como «leyes para explicar la transmisión de caracteres» (herencia genética) a la descendencia. Desde este punto de vista, de transmisión de caracteres, estrictamente hablando no correspondería considerar la primera ley de Mendel (Ley de la uniformidad). Es un error muy extendido suponer que la uniformidad de los híbridos que Mendel observó en sus experimentos es una ley de transmisión, pero la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana en ocasiones no se considera una ley de Mendel. Así pues, hay tres leyes de Mendel que explican los caracteres de la descendencia de dos individuos, pero solo son dos las leyes mendelianas de transmisión: la Ley de segregación de caracteres independientes (2.ª ley, que, si no se tiene en cuenta la ley de uniformidad, es descrita como 1.ª Ley) y la Ley de la herencia independiente de caracteres (3.ª ley, en ocasiones descrita como 2.ª Ley).
1.ª Ley de Mendel: Principio de la uniformidad de los heterocigotos de la primera generación filial[editar]
Establece que si se cruzan dos razas puras (un homocigoto dominante con uno recesivo) para un determinado carácter, los descendientes de la primera generación serán todos iguales entre sí, fenotípica y genotípicamente, e iguales fenotípicamente a uno de los progenitores (de genotipo dominante), independientemente de la dirección del cruzamiento. Expresado con letras mayúsculas las dominantes (A = amarillo) y minúsculas las recesivas (a = verde), se representaría así: AA + aa = Aa, Aa, Aa, Aa. En pocas palabras, existen factores para cada carácter los cuales se separan cuando se forman los gametos y se vuelven a unir cuando ocurre la fecundación.
AA
aAaAa
aAaAa
2.ª Ley de Mendel: Ley de la segregación de los caracteres en la segunda generación filial[editar]
Esta ley establece que durante la formación de los gametos, cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa), y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3/4 de color amarilla y 1/4 de color verde (3:1). Aa + Aa = AA, Aa, Aa, aa.
Aa
AAAAa
aAaaa
Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.
Para cada característica, un organismo hereda dos alelos, uno de cada progenitor. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Estos pueden ser homocigotos o heterocigotos.
En palabras del propio Mendel:6
Resulta ahora claro que los híbridos forman semillas que tienen el uno o el otro de los dos caracteres diferenciales, y de estos la mitad vuelven a desarrollar la forma híbrida, mientras que la otra mitad produce plantas que permanecen constantes y reciben el carácter dominante o el recesivo en igual número.
Gregor Mendel
3.ª Ley de Mendel: Ley de la independencia de los caracteres hereditarios[editar]
En ocasiones es descrita como la 2.ª Ley, en caso de considerar solo dos leyes (criterio basado en que Mendel solo estudió la transmisión de factores hereditarios y no su dominancia/expresividad). Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por lo tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Solo se cumple en aquellos genes que no están ligados (es decir, que están en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. En este caso la descendencia sigue las proporciones. Representándolo con letras, de padres con dos características AALL y aall (donde cada letra representa una característica y la dominancia por la mayúscula o minúscula), por entrecruzamiento de razas puras (1.ª Ley), aplicada a dos rasgos, resultarían los siguientes gametos: AL + al =AL, Al, aL, al.
ALAlaLal
ALAL-ALAl-ALaL-ALal-AL
AlAL-AlAl-AlaL-Alal-Al
aLAL-aLAl-aLaL-aLal-aL
alAL-alAl-alal-aLal-al
Al intercambiar entre estos cuatro gametos, se obtiene la proporción AALL, AALl, AAlL, AAll, AaLL, AaLl, AalL, Aall, aALL, aALl, aAlL, aAll, aaLL, aaLl, aalL, aall.
Como conclusión tenemos: 9 con "A" y "L" dominantes, 3 con "a" y "L", 3 con "A" y "l" y 1 con genes recesivos "aall"
En palabras del propio Mendel:
Por tanto, no hay duda de que a todos los caracteres que intervinieron en los experimentos se aplica el principio de que la descendencia de los híbridos en que se combinan varios caracteres esenciales diferentes, presenta los términos de una serie de combinaciones, que resulta de la reunión de las series de desarrollo de cada pareja de caracteres diferenciales.
Comprendiendo la genética de Merndel
Problemas de genética mendeliana
ingresa a este link y evalúa tus conocimientos sobre leyes de M;endel
En este link encontraras informacion acerca de la evolucion del ser humano haz un resumen y llevalo a clase para participar de un foro
ENIGMAS EVOLUTIVOS
DESCUBREN BABOSA FOSTOSINTETICA
¿UN ANIMAL QUE HACE FOTOSÍNTESIS?
Un estudio de la Universidad del Sur de Florida y en la Universidad de Maryland, College Park (EE.UU.) ha descubierto cómo es posible que una babosa de mar verde brillante pueda vivir como una planta, alimentándose únicamente de luz solar. El trabajo ha sido publicado en la revista The Biological Bulletin.
La babosa en cuestión es Elysia clorótica, tiene un aspecto que se asemeja al de la hoja de una verdura, mide apenas seis centímetros y su hábitat natural son las costas desde Nueva Escocia hasta el sur de florida. Se alimenta de un alga llamada Vaucheria litorea de la que la babosa ha decidido “tomar prestados” sus cloroplastos para llevar a cabo la fotosíntesis.
Para llegar a esta certidumbre, los investigadores descubrieron que la babosa había aprendido a digerir el alga sin dañar los indispensables cloroplastos (integrándolos en sus células digestivas), que transforman la luz del sol en comida, ya que cuenta con genes del alga indispensables para mantener en buen estado los cloroplastos de esta. Se trata del primer caso de transferencia genética funcional de una especie multicelular a otra (lo que se conoce como transferencia horizontal de genes), convirtiendo a esta pequeña babosa en el primer y único animal capaz de realizar el proceso de fotosíntesis.
“Este trabajo confirma que uno de los genes del alga necesarios para reparar los daños en los cloroplastos y mantenerlos en funcionamiento, está presente en el cromosoma de la babosa. El gen se incorpora en el cromosoma de la babosa y se transmite a la siguiente generación”. La descendencia sólo tiene que 'robar' los cloroplastos de las algas, ya que los genes para mantener los cloroplastos ya están presentes en el genoma babosa. Es imposible que los genes de un alga puedan trabajar dentro de una célula animal.Y sin embargo, aquí lo hacen, aclara Sidney K. Pierce, coautor del estudio.
DESCUBREN CALAMAR GIGANTE
INDICE DE CONTENIDOS INTERACTIVOS SOBRE EVOLUCION HUMANA
LA EVOLUCION DEL HOMBRE
MUTACION Y EVOLUCION
FILOGENIA Y CLADISTICA
En este icono encontraras informacion acerca de filogenia y cladistica de seres vivos, arboles filogenticos, fonogramas y cladogramas solo abrelo y documentate ademas si haces Ctrl + Click sobre los hipervinculos podras obtener mas informacion